Home >> ALL ISSUES >> 2017 Issues >> Primary aldosteronism: diagnostic team lifts clinical practice

Primary aldosteronism: diagnostic team lifts clinical practice

image_pdfCreate PDF

William Check, PhD

April 2017—For decades, Michael Laposata, MD, PhD, chair of pathology at the University of Texas Medical Branch in Galveston, has touted the value of diagnostic management teams, and in February he led the first conference dedicated to such teams, referred to as DMTs. There, Alison Woodworth, PhD, told the story of how and why she created a DMT for primary hyperaldosteronism, what it achieved, and where her DMT focus is now.

“Primary hyperaldosteronism is a complex disorder that is challenging to diagnose,” she said at the conference, held in Galveston. Interpreting the screening test for primary aldosteronism, or PA, is one of the main difficulties. “We in pathology are really needed to assist clinicians in understanding what the laboratory tests mean and in understanding the limitations of laboratory tests,” said Dr. Woodworth, an associate professor of pathology and laboratory medicine and director of the core clinical laboratory and point-of-care testing at the University of Kentucky Medical Center.

A few years ago, when Dr. Woodworth was director of esoteric chemistry at Vanderbilt University Medical Center, she established a diagnostic management team for PA and evaluated its clinical utility. The DMT assisted in the diagnostic workup for PA. “We reduced the number of unnecessary tests and helped with more efficiently diagnosing the patients,” Dr. Woodworth said. Before the DMT, four of 32 patients had unnecessary testing or procedures and eight had potential delayed or missed diagnoses. After the team was implemented, there were no perceived unnecessary tests or procedures and no delayed diagnoses.

At the University of Kentucky, Dr. Woodworth is going through the process of implementing a DMT for PA in a more sophisticated format that includes implementing aldosterone and renin assays with fewer preanalytical interferences. She plans to institute a DMT for yet another challenging endocrine condition: measurement of thyroid function in pregnancy.

Dr. Woodworth embarked on her journey into the world of DMT at Vanderbilt when Dr. Laposata was Vanderbilt’s vice chair of pathology.

“When Mike came to me at Vanderbilt and said, ‘Implement a diagnostic management team in chemistry,’ I think you all can appreciate how overwhelming that seemed at the beginning,” she said at the conference.

Overwhelming, for one, because the breadth and volume of a clinical chemistry and core laboratory make it a huge task to select a condition for which to set up a DMT. “At the University of Kentucky, and probably at most of your hospitals, the clinical core laboratory is the largest laboratory by far, in terms of volume and in terms of employees,” she said. Annual test volume is about five million. “It’s a huge scope and obviously we can’t do a diagnostic management team and interpret the 20,000 laboratory test results that come into the clinical laboratory every day,” Dr. Woodworth said.

The core clinical lab serves the highest acuity patients, and rapid turnaround times are often required. It’s a complex, high-paced, fast-throughput, and automated area with a lot of volume, she said: “How do we determine just what to implement in a diagnostic management team?”

Dr. Woodworth listed three main steps in choosing which area to develop into a DMT: talk to clinical peers, choose an area with a manageable volume, and look for an application with a clinical guideline in which interpretation of laboratory data supplements results.

She began at Vanderbilt by consulting with endocrinologist Andrea Utz, MD. “At the beginning she really wasn’t sure that we in pathology could contribute to the patient care team,” Dr. Woodworth said. “It took some time and negotiation, but we did get to a point where we were able to communicate and have reasonable discussions about what might be important to implement.”

CAP TODAY
X