Home >> ALL ISSUES >> 2017 Issues >> TLA in, volume up—micro labs take stock

TLA in, volume up—micro labs take stock

image_pdfCreate PDF

Anne Paxton

May 2017—Rise of the Robots. Disruption. Humans Need Not Apply. “The Future of Work.” A flood of books and articles in the past several months make the argument that service industries in the U.S. hover on the brink of total automation and humans will have to figure out how to adapt.

Forty-five years ago, when Michael R. Jacobs, MD, PhD, started in microbiology, people fantasized about microbiology reaching this stage. At that time, “the dream was that in a few decades there would be an instrument like an auto-analyzer that would take a specimen at one end and spit out a culture and result at the other end, without any action needed in the middle,” says Dr. Jacobs, who is director of clinical microbiology at University Hospitals Cleveland Medical Center.

He doesn’t think that’s practical quite yet. However, the technology is available, and the total laboratory automation (TLA) or partial automation that’s already in place in microbiology laboratories is doing a close imitation of what was pure fantasy in the 1970s. As microbiology directors at some of these labs explain, the return on investment from their TLA installation has been fairly reliable, but converting microbiology from its traditional semi-batch processing to a smooth, automated workflow continues to be tricky.

Dusich

Dusich

“We first started looking at Kiestra Total Laboratory Automation in 2011, before it was bought by Becton Dickinson,” says Irene K. Dusich, MT(ASCP)SM, microbiology manager for the NorthShore University HealthSystem in suburban Chicago. Shortly thereafter, a new chair of pathology came on at NorthShore who wanted a renovation of the laboratory; the retiring technologists and shortages of qualified new staff resulted in a “perfect storm,” creating the conditions for TLA, Dusich says.

NorthShore, in fact, is the site of the first TLA system to be implemented in the United States. That had a downside, because there wasn’t another laboratory they could emulate. “We weren’t so sure about workflow and we didn’t have others out there like us to tell us how to do it,” says Dusich.

The laboratory’s vision was to grow the four-hospital system’s testing volume without needing more space. And, stoked by growth in outreach—now 52 percent of total test volume—the laboratory did achieve those goals. With its BD Kiestra TLA configuration, which includes three incubators, a conveyor, four online workstations, and four off-line workstations for reading plates, the lab now performs about 300,000 billable tests per year.

Unlike classical practice, where microbiologists might be assigned hundreds of urine cultures to read in a day and would perform identification and susceptibility testing at the bench until they were done, her laboratory’s process has “readers” trained to read all types of cultures. They see what’s ready and read it on a screen, and electronically mark it if colonies need to be worked up, noting which workup needs to be done. Other staff load specimens onto the TLA, pull positive blood cultures, make smears, and perform rapid PCR tests.

The staff have had three types of reactions to the transition to TLA, Dusich says. “Some people who were really ready to embrace new technology took to it like ducks to water; others needed a little gentle nudging and after a few months they were okay with it, while others are still getting used to it, and we help them through it.” The laboratory planned to cut six full-time equivalents and was able to achieve that—all by attrition.

The most common problem was microbiologists feeling that if they were strictly doing reading, they weren’t doing their jobs. However, Dusich says the Kiestra does not determine whether a culture is positive or negative or what follow-up needs to be done. The technologist is still the decision-maker.

An early challenge arose with the laboratory’s first BD Kiestra Inoqula, the specimen processor. “It didn’t have a biological safety cabinet incorporated, so specimens that weren’t truly liquid—like a viscous joint fluid or a tissue that must be ground—couldn’t be put through the system because it uses a pipette and they would clog up the pipette. There is a semiautomated solution, but the laboratory preferred to wait until January 2016, when the Inoqula was upgraded to include the safety cabinet. Then we were able to put 100 percent of our bacteriology cultures on the TLA.”

Another issue was that the culture swabs people were used to seeing don’t come in a liquid. “We had to change to Eswabs, and the transition was a little more difficult than I envisioned it.” Because of the number of players involved, the laboratory had to arrange a “search and seizure” operation at every site that used the old swabs and replace them, and nurses at four hospitals had to be educated around the E-swabs’ use, “so it took longer than I thought it would,” Dusich says.

Her laboratory takes credit for prompting a fix of a common trouble spot in processing: MacConkey plate lids getting stuck and causing errors or destruction of plates. “By February 2015 we had a fix for that. Now there are Teflon guides that keep plates in place, so when the instrument goes to pick up the lid, the bottom of the plate doesn’t come with it. That completely solved the problem, and everyone who acquires the system now gets that automatically.”

The NorthShore TLA installation, since it was the first, Dusich notes, cost less than a similar current installation, which would be about $3.5 million. But the laboratory initially thought its return on investment would take seven years. Instead, “because of the number of FTEs we were able to cut, our ROI should be three years just on labor savings,” Dusich says. “That’s not counting anything else you might be able to roll into it, like improving length of stay, antibiotic stewardship, and so on. Those are kind of intangible at this point and it’s really hard to mine the data for that.”

A poster her lab presented at the American Society for Microbiology meeting last year illustrated how TLA, together with the MALDI-TOF mass spectrometer the lab installed in 2013, improved turnaround time variability on urine cultures significantly. The study showed this effect for both organisms identified by spot and conventional testing. Time to AST was also significantly reduced for both types of organisms. Dusich, who assisted in gathering data from the laboratory information system for the study, says the microbiology lab plans to continue data collection for possible future publication.

In contrast with many labs, PCL Alverno in Hammond, Ind., was not running out of space in 2011 when it devised a five-year plan that included laboratory automation. It was just planning for a large increase in test volume. “We had opportunities coming up, and we felt we needed either to expand our area of microbiology for manual workups or to start looking at the automation that was just coming on the market,” says microbiology manager James Clark, BS, SM(ASCP).

“Automated incubators were just being developed, so, looking to the future, we wanted to have a system that would be compatible.” At that point Alverno had automated only its identification and susceptibility testing, using MicroScan instruments.
Alverno, the core lab for 26 acute care hospitals in northwest Indiana and northeast Illinois, does about 4,000 cultures per day, and 30 percent of the test volume comes from outreach. With 10 MicroScans that handle 96 panels apiece, Clark thinks the laboratory is among one of the largest integrated delivery systems in the nation.

Partly to minimize the impact on employees, the laboratory sought to phase in its system by starting with automated processors for cultures, and it chose Copan’s WASP, the front end of the WASP/WASPLab automated system. “We had extra floor space then. Within the lab we called it the dance floor. So it was easy for Copan to come in and move the power poles for the electrical supply and the CO2 lines to wherever they needed to be.” The lab used a Lean design for the space, positioning the front end of the installation where the specimen receiving was, and managing to avoid some of the disruption that automation tracks can create with the laboratory workflow.

Currently the two WASPs, the setup instruments, which were installed in 2012, have 14-foot tracks leading straight back to two double incubators. But Clark says the system is versatile and nearly any configuration is possible, including right-angle turns. “One lab put a track through a wall in order to unload the plates from the canisters in a different room.”

Half of the volume is off-line at the moment, with a single line being used to process urine cultures; tests processed by the second WASP come off the front of the instrument and go into manual incubation. The reason: The smart incubator system requires an interface with the LIS that had to be built from scratch, Clark explains. “We’ve just about finished the complete interface so we can go completely live with our positive urine cultures. That’s the most complicated part of the interface, when you are dealing with the part of the culture that’s going to have additional identification and susceptibility testing.” The lab has a MALDI-TOF for identifications, which is in the process of being interfaced.

“Because of our capacity to grow, we anticipate adding another line within the next year with its own track and smart incubators, which will allow us to double our volume,” Clark says. But Copan’s system is suitable not just for large labs, he adds. “Copan has single incubators which are half the size of ours, so you could hook those up and have something that would handle a 400–500-bed hospital.”

The need to move to a liquid collection system came up early after installation. “Historically in microbiology, it’s very difficult to be sure you’re keeping a sample refrigerated continuously until setup time to maintain sample integrity,” Clark notes. “We’ve always had some issues with a level of contaminated growth due to collection systems, particularly in urine cultures.”
When Becton Dickinson came up with collection tubes with preservatives, they were more expensive, and some hospital-based lab sites didn’t use them for financial reasons. But Alverno decided that requiring its hospitals to use the preservative was appropriate as a matter of maintaining specimen quality, not as a matter of facilitating automation. “Since hospitals could be exposed to reimbursement cuts from the regulatory and reimbursement agencies that are starting to impose penalties for hospital-acquired urinary tract infections, specimen integrity and quality are important not only to patient outcomes but also for financial reasons.”

Alverno approached the swab issue as it relates to automated processing the same way. “We had looked at the flocked swab in the past, which is typical for liquid-based swab specimens, but at the time they seemed cost-prohibitive. I think that automation and a growing demand for the swabs has been a factor in helping bring the price down.” The primary reason to use the flock swabs, however, is still specimen quality—not to accommodate automation, he says.

Automation’s impact on staff was kept to a minimum. “We really didn’t lose FTEs. Not because the instruments didn’t do their job. Rather, we were able to insource all the setups from the hospitals, which meant that each hospital could reduce, on average, by about one FTE. So at all 26 hospitals we were able to reorganize workflow, and at Alverno we only added two FTEs.”

CAP TODAY
X